Estimate the autocovariance function of the series
autocovariance.Rd
Obtain the empirical autocovariance function for the given lags
of a
functional time series, X
. Given a functional time series, the sample
autocovariance functions \(\hat{C}_{h}(u,v)\) are given by:
$$\hat{C}_{h}(u,v) = \frac{1}{N} \sum_{i=1}^{N-|h|}(Y_{i}(u) -
\overline{X}_{N}(u))(Y_{i+|h|}(v) - \overline{X}_{N}(v))$$
where \( \overline{X}_{N}(u) = \frac{1}{N} \sum_{i = 1}^{N} X_{i}(t)\)
denotes the sample mean function and \(h\) is the lag parameter.
Arguments
- X
A dfts object or data which can be automatically converted to that format. See
dfts()
.- lags
Numeric(s) for the lags to estimate the lagged operator.
- center
Boolean if the data should be centered. Default is true.
Value
Return a list or data.frame with the lagged autocovariance function(s) estimated from the data. Each function is given by a \((r \) x \( r)\) matrix, where \(r\) is the number of points observed in each curve.
Examples
v <- seq(0,1,length.out=20)
lagged_autocov <- autocovariance(
X = generate_brownian_bridge(100,v=v),
lags = 1)