Change Point Confidence Intervals
confidence_interval.Rd
Compute confidence intervals for the data based on some changes. The current version is tuned to mean changes.
Usage
confidence_interval(
X,
changes,
K = bartlett_kernel,
h = 2 * ncol(X)^(1/5),
weighting = 0.5,
M = 5000,
alpha = 0.1,
method = "distribution"
)
Arguments
- X
A dfts object or data which can be automatically converted to that format. See
dfts()
.- changes
Numeric vector for detected change points.
- K
Function for the Kernel. Default is bartlett_kernel.
- h
Numeric for bandwidth in computation of long run variance. The default is \(2N^{1/5}\).
- weighting
Weighting for the interval computation, value in [0,1]. Default is 0.5.
- M
Numeric for the number of Brownian motion simulations in computation of the confidence interval. Default is 1000.
- alpha
Numeric for the significance level, in [0,1]. Default is 0.1.
- method
String to indicate the method for computing the percentiles used in the confidence intervals. The options are 'distribution' and 'simulation'. Default is 'distribution'.
Value
Data.frame with the first column for the changes, second for the lower bounds of confidence intervals, and the third for the upper bounds of confidence intervals.
References
Horvath, L., & Rice, G. (2024). Change Point Analysis for Time Series (First edition.). Springer.
Aue, A., Rice, G., & Sonmez, O. (2018). Detecting and dating structural breaks in functional data without dimension reduction. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 80(3), 509-529.
Examples
X <- cbind(generate_brownian_motion(100,v=seq(0,1,0.05))$data,
generate_brownian_motion(100,v=seq(0,1,0.05))$data+1000)
confidence_interval(X,changes = 100)
#> change lower upper
#> 1 100 100 100
confidence_interval(X,changes=100,method = 'simulation')
#> change lower upper
#> 1 100 100 100
X <- cbind(generate_brownian_motion(100,v=seq(0,1,0.05))$data,
generate_brownian_motion(100,v=seq(0,1,0.05))$data+0.5)
confidence_interval(X,100,alpha = 0.1)
#> change lower upper
#> 1 100 90.18279 111.0141
confidence_interval(X,changes=100,alpha = 0.1,method = 'simulation')
#> change lower upper
#> 1 100 89.86422 110.2641
X <- generate_brownian_motion(200,v=seq(0,1,0.05))
confidence_interval(X,100)
#> change lower upper
#> 1 100 -212.4403 450.5309
confidence_interval(X,100,method = 'simulation')
#> change lower upper
#> 1 100 -230.9607 422.3643
X <- cbind(generate_brownian_motion(200,v=seq(0,1,0.05))$data,
generate_brownian_motion(100,v=seq(0,1,0.05))$data+0.1,
generate_brownian_motion(150,v=seq(0,1,0.05))$data-0.05)
confidence_interval(X,c(200,300))
#> change lower upper
#> 1 200 -33.89291 462.4076
#> 2 300 184.66503 429.3958
confidence_interval(X = electricity, changes = c(64, 120),alpha = 0.1)
#> change lower upper
#> 1 64 44.51625 85.85908
#> 2 120 116.84947 123.53462