Generate functional data
generate_karhunen_loeve.Rd
generate_karhunen_loeve
generates functional data via an autoregressive
Karhunen-Loeve expansion. The approach easily accomondate change points in
the mean, distribution, eigenvalues, eigenfunctions, and so forth. In a
sense, the function creates m `groups' of discretely observed
functions with similar properties.
Usage
generate_karhunen_loeve(
Ns,
eigenvalues,
basis,
means,
distribution,
fparam,
dependence = 0,
burnin = 100,
silent = TRUE,
dof = NULL,
shape = NULL,
prev_eps = NULL
)
Arguments
- Ns
Vector of Numerics. Each value in Ns is the number of observations for a given group, for m groups.
- eigenvalues
Vector of eigenvalues, length 1 or m.
- basis
A list of bases (eigenfunctions), length m.
- means
A vector of means, length 1 or Ns.
- distribution
A vector of distributions, length 1 or m.
- fparam
A vector of points indicating the points to evaluate the functions on.
- dependence
Numeric [0,1] indicating strength of VAR(1) process.
- burnin
A numeric value indicating the number of burnin trials.
- silent
A Boolean that toggles displaying the running status.
- dof
Numeric for shape with gamma distribution (rate is set to 1).
- shape
Numeric for degrees of freedom with t-distribution.
- prev_eps
Previous epsilon for dependence across groups. This is only needed if a separate code was run but the new data should be appended. In general only used in internal functions.
Examples
dat1 <- generate_karhunen_loeve(
Ns=100, eigenvalues=c(1/(1:3)), basis=fda::create.bspline.basis(nbasis=3,norder=3),
means=0, distribution='Normal',
fparam=seq(0,1,0.1), dependence=0, burnin=100, silent=TRUE, dof=NULL, shape=NULL,
prev_eps=NULL)
dat2 <- generate_karhunen_loeve(
Ns=50, eigenvalues=c(1/(1:4)), basis=fda::create.bspline.basis(nbasis=4),
means=5, distribution='exponential',
fparam=seq(0,1,0.1), dependence=0, burnin=100, silent=TRUE, dof=NULL, shape=NULL,
prev_eps=dat1$prev_eps)
dat <- dfts(cbind(dat1$data$data, dat2$data$data),fparam = dat1$data$fparam)