Estimate Long-run Covariance Kernel
long_run_covariance.Rd
Estimate the long-run covariance kernel for functional data. That is, solve \( C_{\epsilon}(t,t') = \sum_{l=-\inf}^{\inf} \text{Cov}(\epsilon_0(t), \epsilon_l(t')) \) with sequence \((\epsilon_i : i \in \mathbb{Z})\) defined as the centered data (can center based on changes if given).
Usage
long_run_covariance(
X,
h = 2 * ncol(X)^(1/5),
K = bartlett_kernel,
changes = NULL
)
Arguments
- X
A dfts object or data which can be automatically converted to that format. See
dfts()
.- h
The window parameter parameter for the estimation of the long run covariance kernel. The default value is
h=2*ncol(X)^(1/5)
. Note there exists an internal check such that \(h=min(h,ncol(X)-1)\) when alternative options are given.- K
Function indicating the kernel to use if \(h>0\).
- changes
Vector of numeric change point locations. Can be NULL.