Skip to contents

This function gets the predicted value from a funkyForest model.

Usage

predict_funkyForest(model, data_pred, type = "all", data = NULL)

Arguments

model

funkyForest model. See funkyForest. A list of CART models from rpart. Additionally this is given in funkyModel.

data_pred

data.frame of the data to be predicted.

type

(Optional) String indicating type of analysis. Options are pred or all. The choice changes the return to best fit intended use.

data

(Optional) Data.frame of full data. The data used to fit the model will be extracted (by row name).

Value

The returned data depends on type:

  • type='pred': returns a vector of the predictions

  • type='all': returns a vector of the predictions

Examples

data_pp <- simulatePP(
  agentVarData =
    data.frame(
      "outcome" = c(0, 1),
      "A" = c(0, 0),
      "B" = c(1 / 50, 1 / 50)
    ),
  agentKappaData = data.frame(
    "agent" = c("A", "B"),
    "clusterAgent" = c(NA, "A"),
    "kappa" = c(10, 5)
  ),
  unitsPerOutcome = 5,
  replicatesPerUnit = 1,
  silent = FALSE
)
#> Outcome: 0 (1/2)
#> Outcome: 1 (2/2)
pcaData <- getKsPCAData(data_pp,
  replicate = "replicate",
  xRange = c(0, 1), yRange = c(0, 1), silent = FALSE
)
#> PCA Pairs (4): 1, 2, 3, 4
RF <- funkyForest(data = pcaData[-2], nTrees = 5) #
pred <- predict_funkyForest(
  model = RF$model, type = "all",
  data_pred = pcaData[-2],
  data = pcaData[-2]
)