Compute and return information on tests for the homogeneity of data.
Usage
anova_tests(data, tests = c("anova", "welch", "bayes", "kruskal", "median"))Details
Tests require independent data unless otherwise specified. anova: Classic ANOVA. Requires normal data with homogeneous variance and similar group sizes welch: ANOVA modification that allows nonhomogeneous variances and is more robust to varying group sizes bayes: Bayesian approach to group differences kruskal: Also called the Krukal-wallis test. Non-parametric test median: Also called Brown-Mood median test. Non-parametric test with Bonferroni correction
Examples
data <- data.frame(
"value" = c(rnorm(14, sd = 2), rnorm(6), rnorm(20, mean = 2)),
"group" = c(rep("A", 14), rep("B", 6), rep("C", 20))
)
anova_tests(data)
#> $means
#> A B C
#> -0.5577610 -0.3827129 2.0143038
#>
#> $medians
#> A B C
#> -0.4915249 -0.2873072 2.0480439
#>
#> $anova
#> [1] 0.000125744
#>
#> $welch
#> [1] 0.0001171815
#>
#> $bayes
#> [1] 273.893
#>
#> $kruskal
#> [1] 0.000219581
#>
#> $median
#> [1] 0.0003760779
#>