Compute the Box-Cox transformation for improvement of the Normality and residual assumptions.
Usage
boxcox_transformation(data, lambdas = seq(-3, 3, 1/10))Examples
data <- data.frame(
"value" = c(rnorm(14, sd = 2), rnorm(6), rnorm(20, mean = 2)),
"group" = c(rep("A", 14), rep("B", 6), rep("C", 20))
)
boxcox_transformation(data)
#> $data
#> value group
#> 1 53.11016 A
#> 2 40.44976 A
#> 3 30.75590 A
#> 4 27.67300 A
#> 5 13.11800 A
#> 6 36.98701 A
#> 7 0.00000 A
#> 8 17.68290 A
#> 9 25.79883 A
#> 10 14.97023 A
#> 11 25.65299 A
#> 12 36.13723 A
#> 13 35.88139 A
#> 14 19.18063 A
#> 15 23.00616 B
#> 16 32.21296 B
#> 17 17.41573 B
#> 18 26.39353 B
#> 19 29.28876 B
#> 20 17.77505 B
#> 21 31.70966 C
#> 22 28.47461 C
#> 23 26.37005 C
#> 24 28.39475 C
#> 25 21.31475 C
#> 26 29.22975 C
#> 27 30.29652 C
#> 28 30.47519 C
#> 29 37.04160 C
#> 30 44.12646 C
#> 31 33.21474 C
#> 32 23.82691 C
#> 33 37.32536 C
#> 34 31.25594 C
#> 35 40.18460 C
#> 36 56.15813 C
#> 37 38.84594 C
#> 38 21.81036 C
#> 39 37.24272 C
#> 40 45.06042 C
#>
#> $lambda
#> [1] 2.030303
#>
#> $shift
#> [1] -5.224669
#>