Generate Functional Data
generate_data.Rd
A general wrapper function to allow generation of functional data according
to several approaches: bbridge
, bmotion
, kl
, ou
,
and far1
.
Arguments
- fparam
fparam of data (or resolution that will be equally spaced on [0,1]).
- data_details
List of named lists indicating parameters for each data group. Each process can use different parameters, given below.
bmotion: Brownian motion contains:
N: Numeric indicating the number of observations.
sd: Numeric for the standard deviation of the observations.
bbridge: Brownian bridge contains:
N: Numeric indicating the number of observations.
sd: Numeric for the standard deviation of the observations.
kl: Karhunen-Loeve expansion contains:
N: Numeric indicating the number of observations.
distribution: Distribution of the errors. Options include:
binomial
,exponential
,laplace
,normal
,t
(add dof argument),gamma
(add shape argument), andcauchy
.eigenvalues: Numerics for the eigenvalues of the given distribution (value for each in basis).
mean: Numeric for the mean of the group.
dependence: Strength of dependence between observation.
basis: fda
basisfd
object.dof: (Optional) Numeric for the degrees of freedom if using a
t
distribution.shape: (Optional) Numeric for the shape if using a
gamma
distribution.
ou: Ornstein-Uhlenbeck process requires:
N: Numeric indicating the number of observations.
dependence: Strength of dependence between observation.
far1: Functional autoregressive process of order 1 contains:
N: Numeric indicating the number of observations.
dependence: Strength of dependence between observation.
sd: Numeric for the standard deviation of the observations.
vary: Boolean if the starting value each observation should be 0 or vary. It does this by dropping first value. If fparam is given as a number, it can adjust so that the length is the same. If fparam is a vector, the fparam will be one smaller.
- burnin
Numeric for amount of burnin for data. Only used for the first groups. Subsequent groups begin at the end of the last group.
Examples
result <- generate_data(
fparam=15,
data_details =list('bmotion'=list('N'=100, 'sd'=1),
'bbridge'=list('N'=100, 'sd'=1),
'bbridge'=list('N'=100, 'sd'=1),
'kl'=list('N'=100,
'distribution'='Normal',
'eigenvalues'=1/1:4,
'mean'=0, 'dependence'=0,
'basis'=fda::create.bspline.basis(),
'sd'=1),
'ou'=list('N'=100, 'dependence'=0 ) ,
'far1'=list('N'=100, 'dependence'=0,
'sd'=1,'vary'=FALSE) )
)