Compute the reverse Box-Cox transformation for improvement of the Normality and residual assumptions.
Examples
data <- data.frame(
"value" = c(rnorm(14, sd = 2), rnorm(6), rnorm(20, mean = 2)),
"group" = c(rep("A", 14), rep("B", 6), rep("C", 20))
)
tmp <- boxcox_transformation(data)
boxcox_inverse(tmp$data[, 1], tmp$lambda, tmp$shift)
#> [1] 0.14006970 -1.27824665 -0.09992980 -0.50296689 0.88959423 5.51083515
#> [7] 0.09306276 1.15541814 0.23638975 -3.82344098 1.72417296 -0.48647348
#> [13] -0.41217439 0.03835518 0.02956075 0.54982754 -2.27411486 2.68255718
#> [19] -0.36122126 0.21335575 3.07434588 1.33491175 3.11395242 1.75410359
#> [25] 0.82243669 1.02414938 3.06505732 2.13167063 2.48862881 0.30054943
#> [31] 0.52926369 2.28415034 3.33732041 2.23669628 3.31829338 2.52390979
#> [37] 2.60674805 1.89006433 2.17218172 1.90967271